Java知识点总结——并发部分
参考
进程与线程
概念
进程
进程是程序的一次执行过程,是系统运行程序的基本单位,因此进程是动态的。系统运行一个程序即是一个进程从创建,运行到消亡的过程。
在 Java 中,当我们启动 main 函数时其实就是启动了一个 JVM 的进程,而 main 函数所在的线程就是这个进程中的一个线程,也称主线程。
线程
线程与进程相似,但线程是一个比进程更小的执行单位。一个进程在其执行的过程中可以产生多个线程。与进程不同的是同类的多个线程共享进程的堆和方法区资源,但每个线程有自己的程序计数器、虚拟机栈和本地方法栈,所以系统在产生一个线程,或是在各个线程之间作切换工作时,负担要比进程小得多,也正因为如此,线程也被称为轻量级进程。
Java 程序天生就是多线程程序,一个 Java 程序的运行是 main 线程和多个其他线程同时运行。
从JVM角度说进程与线程的区别
总结
一个进程中可以有多个线程,多个线程共享进程的堆和方法区 (JDK1.8 之后的元空间)**资源,但是每个线程有自己的程序计数器、虚拟机栈和本地方法栈**。
线程是进程划分成的更小的运行单位。线程和进程最大的不同在于基本上各进程是独立的,而各线程则不一定,因为同一进程中的线程极有可能会相互影响。线程执行开销小,但不利于资源的管理和保护;而进程正相反。
程序计数器
作用:
- 字节码解释器通过改变程序计数器来依次读取指令,从而实现代码的流程控制,如:顺序执行、选择、循环、异常处理。
- 在多线程的情况下,程序计数器用于记录当前线程执行的位置,从而当线程被切换回来的时候能够知道该线程上次运行到哪儿了。
线程私有的目的:线程切换后能恢复到正确的执行位置。
虚拟机栈和本地方法栈
作用:
- 虚拟机栈: 每个 Java 方法在执行的同时会创建一个栈帧用于存储局部变量表、操作数栈、常量池引用等信息。从方法调用直至执行完成的过程,就对应着一个栈帧在 Java 虚拟机栈中入栈和出栈的过程。
- 本地方法栈: 和虚拟机栈所发挥的作用非常相似,区别是: 虚拟机栈为虚拟机执行 Java 方法 (也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。 在 HotSpot 虚拟机中和 Java 虚拟机栈合二为一。
线程私有的目的:为了保证线程中的局部变量不被别的线程访问到。
堆和方法区
堆和方法区是所有线程共享的资源,其中堆是进程中最大的一块内存,主要用于存放新创建的对象 (几乎所有对象都在这里分配内存),方法区主要用于存放已被加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。
并发与并行
- 并发: 同一时间段,多个任务都在执行 (单位时间内不一定同时执行);
- 并行: 单位时间内,多个任务同时执行。
线程的生命周期与状态
线程的6种状态
线程的状态变迁
文字描述:
线程创建之后它将处于 NEW(新建) 状态,调用 start()
方法后开始运行,线程这时候处于 READY(可运行) 状态。可运行状态的线程获得了 CPU 时间片(timeslice)后就处于 RUNNING(运行) 状态。
当线程执行 wait()
方法之后,线程进入 WAITING(等待) 状态。进入等待状态的线程需要依靠其他线程的通知才能够返回到运行状态,而 TIME_WAITING(超时等待) 状态相当于在等待状态的基础上增加了超时限制,比如通过 sleep(long millis)
方法或 wait(long millis)
方法可以将 Java 线程置于 TIMED WAITING 状态。当超时时间到达后 Java 线程将会返回到 RUNNABLE 状态。当线程调用同步方法时,在没有获取到锁的情况下,线程将会进入到 BLOCKED(阻塞) 状态。线程在执行 Runnable 的run()
方法之后将会进入到 TERMINATED(终止) 状态。
sleep()
和wait()
的区别
- 两者最主要的区别在于:**
sleep()
方法没有释放锁,而wait()
方法释放了锁** 。 - 两者都可以暂停线程的执行。
wait()
通常被用于线程间交互/通信,sleep()
通常被用于暂停执行。wait()
方法被调用后,线程不会自动苏醒,需要别的线程调用同一个对象上的notify()
或者notifyAll()
方法。sleep()
方法执行完成后,线程会自动苏醒。或者可以使用wait(long timeout)
超时后线程会自动苏醒。
为什么调用 start() 方法时会执行 run() 方法?为什么不能直接调用 run() 方法?
new 一个 Thread,线程进入了新建状态。调用 start()
方法,会启动一个线程并使线程进入了就绪状态,当分配到时间片后就可以开始运行了。 start()
会执行线程的相应准备工作,然后自动执行 run()
方法的内容,这是真正的多线程工作。 但是,直接执行 run()
方法,会把 run()
方法当成一个 main 线程下的普通方法去执行,并不会在某个线程中执行它,所以这并不是多线程工作。
总结: 调用 start()
方法方可启动线程并使线程进入就绪状态,直接执行 run()
方法的话不会以多线程的方式执行。
上下文切换
多线程编程中一般线程的个数都大于 CPU 核心的个数,而一个 CPU 核心在任意时刻只能被一个线程使用,为了让这些线程都能得到有效执行,CPU 采取的策略是为每个线程分配时间片并轮转的形式。当一个线程的时间片用完的时候就会重新处于就绪状态让给其他线程使用,这个过程就属于一次上下文切换。
当前任务在执行完 CPU 时间片切换到另一个任务之前会先保存自己的状态,以便下次再切换回这个任务时,可以再加载这个任务的状态。任务从保存到再加载的过程就是一次上下文切换。
上下文切换通常是计算密集型的。也就是说,它需要相当可观的处理器时间,在每秒几十上百次的切换中,每次切换都需要纳秒量级的时间。所以,上下文切换对系统来说意味着消耗大量的 CPU 时间,事实上,可能是操作系统中时间消耗最大的操作。
线程死锁与避免
线程死锁
线程死锁描述的是这样一种情况:多个线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放。由于线程被无限期地阻塞,因此程序不可能正常终止。
死锁的四个必要条件:
- 互斥条件:该资源任意一个时刻只由一个线程占用。
- 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
- 不剥夺条件:线程已获得的资源在未使用完之前不能被其他线程强行剥夺,只有自己使用完毕后才释放资源。
- 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。
避免死锁
- 破坏互斥条件 :这个条件我们没有办法破坏,因为我们用锁本来就是想让他们互斥的(临界资源需要互斥访问)。
- 破坏请求与保持条件 :一次性申请所有的资源。
- 破坏不剥夺条件 :占用部分资源的线程进一步申请其他资源时,如果申请不到,可以主动释放它占有的资源。
- 破坏循环等待条件 :靠按序申请资源来预防。按某一顺序申请资源,释放资源则反序释放。破坏循环等待条件。
synchronized
关键字
概述
synchronized
关键字解决的是多个线程之间访问资源的同步性,synchronized
关键字可以保证被它修饰的方法或者代码块在任意时刻只能有一个线程执行。
使用方法
修饰实例方法
作用于当前对象实例加锁,进入同步代码前要获得当前对象实例的锁。
修饰静态方法
也就是给当前类加锁,会作用于类的所有对象实例 ,进入同步代码前要获得 当前 class 的锁。因为静态成员不属于任何一个实例对象,是类成员(static
表明这是该类的一个静态资源,不管 new
了多少个对象,只有一份)。所以,如果一个线程 A 调用一个实例对象的非静态 synchronized
方法,而线程 B 需要调用这个实例对象所属类的静态 synchronized
方法,是允许的,不会发生互斥现象,因为访问静态 synchronized
方法占用的锁是当前类的锁,而访问非静态 synchronized
方法占用的锁是当前实例对象的锁。
修饰代码块
指定加锁对象,对给定对象/类加锁。synchronized(this|object)
表示进入同步代码库前要获得给定对象的锁。synchronized(类.class)
表示进入同步代码前要获得 当前 class 的锁。
总结
synchronized
关键字加到static
静态方法和synchronized(class)
代码块上都是是给 Class 类上锁。synchronized
关键字加到实例方法上是给对象实例上锁。- 尽量不要使用
synchronized(String a)
。因为 JVM 中,字符串常量池具有缓存功能!
构造方法使用synchronized
?
构造方法不能使用 synchronized 关键字修饰。
构造方法本身就属于线程安全的,不存在同步的构造方法一说。
synchronized 关键字的底层原理
synchronized
同步语句块的实现使用的是 monitorenter
和 monitorexit
指令,其中 monitorenter
指令指向同步代码块的开始位置,monitorexit
指令则指明同步代码块的结束位置。
synchronized
修饰的方法并没有 monitorenter
指令和 monitorexit
指令,取得代之的确实是 ACC_SYNCHRONIZED
标识,该标识指明了该方法是一个同步方法。
不过两者的本质都是对对象监视器 monitor 的获取。
JDK1.6 之后的 synchronized 关键字底层的优化
JDK1.6 对锁的实现引入了大量的优化,如偏向锁、轻量级锁、自旋锁、适应性自旋锁、锁消除、锁粗化等技术来减少锁操作的开销。
锁主要存在四种状态,依次是:无锁状态、偏向锁状态、轻量级锁状态、重量级锁状态,他们会随着竞争的激烈而逐渐升级。注意锁可以升级不可降级,这种策略是为了提高获得锁和释放锁的效率。
详细信息参考:Java6 及以上版本对 synchronized 的优化
synchronized 和 ReentrantLock 的区别
两者都是可重入锁
“可重入锁” 指的是自己可以再次获取自己的内部锁。比如一个线程获得了某个对象的锁,此时这个对象锁还没有释放,当其再次想要获取这个对象的锁的时候还是可以获取的,如果不可锁重入的话,就会造成死锁。同一个线程每次获取锁,锁的计数器都自增 1,所以要等到锁的计数器下降为 0 时才能释放锁。
synchronized 依赖于 JVM 而 ReentrantLock 依赖于 API
synchronized
是依赖于 JVM 实现的,虚拟机团队在 JDK1.6 为 synchronized
关键字进行了很多优化,但是这些优化都是在虚拟机层面实现的,并没有直接暴露给我们。ReentrantLock
是 JDK 层面实现的(也就是 API 层面,需要 lock() 和 unlock() 方法配合 try/finally 语句块来完成),所以我们可以通过查看它的源代码,来看它是如何实现的。
ReentrantLock 比 synchronized 增加了一些高级功能
相比synchronized
,ReentrantLock
增加了一些高级功能。主要来说主要有三点:
- 等待可中断 :
ReentrantLock
提供了一种能够中断等待锁的线程的机制,通过lock.lockInterruptibly()
来实现这个机制。也就是说正在等待的线程可以选择放弃等待,改为处理其他事情。 - 可实现公平锁 :
ReentrantLock
可以指定是公平锁还是非公平锁。而synchronized
只能是非公平锁。所谓的公平锁就是先等待的线程先获得锁。ReentrantLock
默认情况是非公平的,可以通过ReentrantLock
类的ReentrantLock(boolean fair)
构造方法来制定是否是公平的。 - 可实现选择性通知(锁可以绑定多个条件):
synchronized
关键字与wait()
和notify()
/notifyAll()
方法相结合可以实现等待/通知机制。ReentrantLock
类当然也可以实现,但是需要借助于Condition
接口与newCondition()
方法。
volatile
关键字
CPU缓存模型
CPU Cache 缓存的是内存数据用于解决 CPU 处理速度和内存不匹配的问题,内存缓存的是硬盘数据用于解决硬盘访问速度过慢的问题。
工作方式:先复制一份数据到 CPU Cache 中,当 CPU 需要用到的时候就可以直接从 CPU Cache 中读取数据,当运算完成后,再将运算得到的数据写回 Main Memory 中。但是,这样存在内存缓存不一致性的问题。CPU 为了解决内存缓存不一致性问题可以通过制定缓存一致协议或者其他手段来解决。
JMM(Java内存模型)
在当前的 Java 内存模型下,线程可以把变量保存本地内存(比如机器的寄存器)中,而不是直接在主存中进行读写。这就可能造成一个线程在主存中修改了一个变量的值,而另外一个线程还继续使用它在寄存器中的变量值的拷贝,造成数据的不一致。
要解决这个问题,就需要把变量声明为volatile
,这就指示 JVM,这个变量是共享且不稳定的,每次使用它都到主存中进行读取。
所以volatile
关键字除了防止 JVM 的指令重排 ,还有一个重要的作用就是保证变量的可见性。
并发编程的三个重要特性
- 原子性 : 一个的操作或者多次操作,要么所有的操作全部都得到执行并且不会收到任何因素的干扰而中断,要么所有的操作都执行,要么都不执行。
synchronized
可以保证代码片段的原子性。 - 可见性 :当一个变量对共享变量进行了修改,那么另外的线程都是立即可以看到修改后的最新值。
volatile
关键字可以保证共享变量的可见性。 - 有序性 :代码在执行的过程中的先后顺序,Java 在编译器以及运行期间的优化,代码的执行顺序未必就是编写代码时候的顺序。
volatile
关键字可以禁止指令进行重排序优化。
synchronized 关键字和 volatile 关键字的区别
synchronized
关键字和 volatile
关键字是两个互补的存在,而不是对立的存在!
volatile
关键字是线程同步的轻量级实现,所以**volatile
性能肯定比synchronized
关键字要好。但是volatile
关键字只能用于变量而synchronized
关键字可以修饰方法以及代码块**。volatile
关键字能保证数据的可见性,但不能保证数据的原子性。synchronized
关键字两者都能保证。volatile
关键字主要用于解决变量在多个线程之间的可见性,而synchronized
关键字解决的是多个线程之间访问资源的同步性。
ThreadLocal
通常情况下,我们创建的变量是可以被任何一个线程访问并修改的。如果想实现每一个线程都有自己的专属本地变量该如何解决呢? JDK 中提供的ThreadLocal
类正是为了解决这样的问题。
ThreadLocal
类主要解决的就是让每个线程绑定自己的值,可以将ThreadLocal
类形象的比喻成存放数据的盒子,盒子中可以存储每个线程的私有数据。
如果创建了一个ThreadLocal
变量,那么访问这个变量的每个线程都会有这个变量的本地副本,这也是ThreadLocal
变量名的由来。他们可以使用 get()
和 set()
方法来获取默认值或将其值更改为当前线程所存的副本的值,从而避免了线程安全问题。
线程池
线程池的目的
池化技术已经屡见不鲜,线程池、数据库连接池、Http 连接池等等都是对这个思想的应用。池化技术的思想主要是为了减少每次获取资源的消耗,提高对资源的利用率。
线程池提供了一种限制和管理资源(包括执行一个任务)。 每个线程池还维护一些基本统计信息,例如已完成任务的数量。
使用线程池的好处:
- 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
- 提高响应速度。当任务到达时,任务可以不需要的等到线程创建就能立即执行。
- 提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
执行 execute()方法和 submit()方法的区别
execute()
方法用于提交不需要返回值的任务,所以无法判断任务是否被线程池执行成功与否;submit()
方法用于提交需要返回值的任务。线程池会返回一个Future
类型的对象,通过这个Future
对象可以判断任务是否执行成功,并且可以通过Future
的get()
方法来获取返回值,get()
方法会阻塞当前线程直到任务完成,而使用get(long timeout,TimeUnit unit)
方法则会阻塞当前线程一段时间后立即返回,这时候有可能任务没有执行完。
Atomic 原子类
Atomic简介
Atomic 是指一个操作是不可中断的。即使是在多个线程一起执行的时候,一个操作一旦开始,就不会被其他线程干扰。所以,所谓原子类说简单点就是具有原子/原子操作特征的类。
AtomicInteger 类原理
AtomicInteger 类主要利用 CAS (compare and swap) + volatile 和 native 方法来保证原子操作,从而避免 synchronized 的高开销,执行效率大为提升。
CAS 的原理是拿期望的值和原本的一个值作比较,如果相同则更新成新的值。UnSafe 类的 objectFieldOffset() 方法是一个本地方法,这个方法是用来拿到“原来的值”的内存地址,返回值是 valueOffset。另外 value 是一个 volatile 变量,在内存中可见,因此 JVM 可以保证任何时刻任何线程总能拿到该变量的最新值。
AQS
AQS简介
AQS 是一个用来构建锁和同步器的框架,使用 AQS 能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的 ReentrantLock
,Semaphore
,其他的诸如 ReentrantReadWriteLock
,SynchronousQueue
,FutureTask
等等皆是基于 AQS 的。当然,我们自己也能利用 AQS 非常轻松容易地构造出符合我们自己需求的同步器。
AQS原理概览
AQS 核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制 AQS 是用 CLH 队列锁实现的,即将暂时获取不到锁的线程加入到队列中。
CLH(Craig,Landin,and Hagersten)队列是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS 是将每条请求共享资源的线程封装成一个 CLH 锁队列的一个结点(Node)来实现锁的分配。
AQS对资源的共享方式
AQS 定义两种资源共享方式
Exclusive(独占):只有一个线程能执行,如
ReentrantLock
。又可分为公平锁和非公平锁:- 公平锁:按照线程在队列中的排队顺序,先到者先拿到锁
非公平锁:当线程要获取锁时,无视队列顺序直接去抢锁,谁抢到就是谁的
Share(共享):多个线程可同时执行,如
CountDownLatch
、Semaphore
、CountDownLatch
、CyclicBarrier
、ReadWriteLock
。